Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Geneticsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genetics
Article . 2002 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Hal
Article . 2002
Data sources: Hal
Genetics
Article . 2003
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Green Fluorescent Protein Reporter Genetic Screen That Identifies Modifiers of Hox Gene Function in the Drosophila Embryo

Authors: Jacques Pradel; Samir Merabet; Yacine Graba; Francoise Catala;

A Green Fluorescent Protein Reporter Genetic Screen That Identifies Modifiers of Hox Gene Function in the Drosophila Embryo

Abstract

AbstractHox genes encode evolutionarily conserved transcription factors that play fundamental roles in the organization of the animal body plan. Molecular studies emphasize that unidentified genes contribute to the control of Hox activity. In this study, we describe a genetic screen designed to identify functions required for the control of the wingless (wg) and empty spiracles (ems) target genes by the Hox Abdominal-A and Abdominal-B proteins. A collection of chromosomal deficiencies were screened for their ability to modify GFP fluorescence patterns driven by Hox response elements (HREs) from wg and ems. We found 15 deficiencies that modify the activity of the ems HRE and 18 that modify the activity of the wg HRE. Many deficiencies cause ectopic activity of the HREs, suggesting that spatial restriction of transcriptional activity is an important level in the control of Hox gene function. Further analysis identified eight loci involved in the homeotic regulation of wg or ems. A majority of these modifier genes correspond to previously characterized genes, although not for their roles in the regulation of Hox targets. Five of them encode products acting in or in connection with signal transduction pathways, which suggests an extensive use of signaling in the control of Hox gene function.

Keywords

Luminescent Proteins, Transcription, Genetic, Genes, Reporter, Green Fluorescent Proteins, Genes, Homeobox, Animals, Drosophila, [SDV.BC] Life Sciences [q-bio]/Cellular Biology, In Situ Hybridization

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Average
Average
Average
hybrid