
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Using the magnetohydrodynamic model, the evolution of a resistive plasma can be represented as a relaxation through a sequence of force-free equilibrium states. We show, by extending existing work, that this process is equivalent to magnetic field diffusion in a strongly anisotropie static conductor. The latter evolution is easier to simulate numerically, and is carried out for laboratory based plasmas confined in cylinders and toroids. We obtain a variety of universal equilibrium profiles that are consistent with experiment and relaxation theory and that predict the existence of states arising in reversed-field pinches. The existence of a critical axial flux is predicted about which there exist stable modes of operation corresponding to high and low current. We also show the existence of a critical aspect ratio at which it is most desirable to build toroidal devices. This corresponds to the value at which maximum current, for a fixed driving field, can be generated.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
