Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Leiden University Sc...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Astrophysical Journal
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2020
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Number Densities and Stellar Populations of Massive Galaxies at 3 < z < 6: A Diverse, Rapidly Forming Population in the Early Universe

a diverse, rapidly forming population in the early universe
Authors: Z. Cemile Marsan; Adam Muzzin; Danilo Marchesini; Mauro Stefanon; Nicholas Martis; Marianna Annunziatella; Jeffrey C. C. Chan; +5 Authors

The Number Densities and Stellar Populations of Massive Galaxies at 3 < z < 6: A Diverse, Rapidly Forming Population in the Early Universe

Abstract

Abstract We present the census of massive (log(M */M ⊙) > 11) galaxies at 3 < z < 6 identified over the COSMOS/UltraVISTA Ultra-Deep field stripes: consisting of ≈100 and ≈20 high-confidence candidates at 3 < z < 4 and 4 < z < 6, respectively. The 3 < z < 4 population is comprised of post-starburst, UV-star-forming, and dusty star-forming galaxies in roughly equal fractions, while UV-star-forming galaxies dominate at 4 < z < 6 . We account for various sources of biases in the spectral energy distribution (SED) modeling, finding that the treatment of emission line contamination is essential for understanding the number densities and mass growth histories of massive galaxies at z > 3. The significant increase in observed number densities at z ∼ 4 (> × 5 in ≲600 Myr) implies that this is the epoch at which log(M */M ⊙) > 11 galaxies emerge in significant numbers, with stellar ages (≈500–900 Myr) indicating rapid formation epochs as early as z ∼ 7. Leveraging ancillary multiwavelength data sets, we perform panchromatic SED modeling to constrain the total star formation activity of the sample. The star formation activity of the sample is generally consistent with being on the star formation main sequence at the considered redshifts, with ≈15%–25% of the population showing evidence of suppressed star formation rates, indicating that quenching mechanisms are already at play by z ∼ 4. We stack the available Hubble Space Telescope imaging, confirming their compact nature (r e ≲ 2.2 kpc), consistent with expected sizes of high-z star-forming galaxies. Finally, we discuss how our results are in-line with the early formation epochs and short formation timescales inferred from the fossil records of the most massive galaxies in the universe.

Keywords

594, Astrophysics of Galaxies (astro-ph.GA), FOS: Physical sciences, Astrophysics - Astrophysics of Galaxies

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    29
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
29
Top 10%
Average
Top 10%
Green
gold