
Abstract Accurate assessment of SARS‐CoV‐2 immunity is critical in evaluating vaccine efficacy and devising public health policies. Whilst the exact nature of effective immunity remains incompletely defined, SARS‐CoV‐2‐specific T‐cell responses are a critical feature that will likely form a key correlate of protection against COVID‐19. Here, we developed and optimized a high‐throughput whole blood‐based assay to determine the T‐cell response associated with prior SARS‐CoV‐2 infection and/or vaccination amongst 231 healthy donors and 68 cancer patients. Following overnight in vitro stimulation with SARS‐CoV‐2‐specific peptides, blood plasma samples were analysed for T H 1‐type cytokines. Highly significant differential IFN‐γ + /IL‐2 + SARS‐CoV‐2‐specific T‐cell responses were seen amongst previously infected COVID‐19‐positive healthy donors in comparison with unknown / naïve individuals ( p < 0·0001). IFN‐γ production was more effective at identifying asymptomatic donors, demonstrating higher sensitivity (96·0% vs. 83·3%) but lower specificity (84·4% vs. 92·5%) than measurement of IL‐2. A single COVID‐19 vaccine dose induced IFN‐γ and/or IL‐2 SARS‐CoV‐2‐specific T‐cell responses in 116 of 128 (90·6%) healthy donors, reducing significantly to 27 of 56 (48·2%) when measured in cancer patients ( p < 0·0001). A second dose was sufficient to boost T‐cell responses in the majority (90·6%) of cancer patients, albeit IFN‐γ + responses were still significantly lower overall than those induced in healthy donors ( p = 0·034). Three‐month post‐vaccination T‐cell responses also declined at a faster rate in cancer patients. Overall, this cost‐effective standardizable test ensures accurate and comparable assessments of SARS‐CoV‐2‐specific T‐cell responses amenable to widespread population immunity testing, and identifies individuals at greater need of booster vaccinations.
Adult, Male, COVID-19 Vaccines, Adolescent, Immunology, T cells, Interferon-gamma, Immunogenicity, Vaccine, vaccine, Immunology and Allergy, antibodies, Humans, Aged, Aged, 80 and over, Immunity, Cellular, SARS-CoV-2, Vaccination, COVID-19, Original Articles, Middle Aged, Th1 Cells, Carrier State, Female
Adult, Male, COVID-19 Vaccines, Adolescent, Immunology, T cells, Interferon-gamma, Immunogenicity, Vaccine, vaccine, Immunology and Allergy, antibodies, Humans, Aged, Aged, 80 and over, Immunity, Cellular, SARS-CoV-2, Vaccination, COVID-19, Original Articles, Middle Aged, Th1 Cells, Carrier State, Female
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 21 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
