Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Computati...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Computational and Engineering Mathematics
Article . 2017 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2017
Data sources: zbMATH Open
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Numerical Experiment for the Barenblatt - Zheltov - Kochina Equation in a Bounded Domain

A numerical experiment for the Barenblatt-Zheltov-Kochina equation in a bounded domain
Authors: Moskvicheva, Polina Olegovna;

A Numerical Experiment for the Barenblatt - Zheltov - Kochina Equation in a Bounded Domain

Abstract

Summary: An investigation of the stability of Sobolev type equations undoubtedly is an actual problem, since these equations, with various conditions, model a multitude of processes. For example, the Barenblatt - Zheltov - Kochina model describes such processes as, for example, filtration and thermal conductivity. In this paper we consider the Cauchy - Dirichlet problem for equation in a bounded domain. We shall understand stability in the sense of Lyapunov A. M. The aim of this paper is to obtain conditions under which the stationary solution of our problem will be stable and asymptotically stable. The obtained conditions are formulated in the theorem. In addition, an algorithm of the computational experiment will be described to illustrate the instability in the case when the conditions of the theorem are not satisfied. We note that here we apply the method of the Lyapunov functional modified for the case of complete normed spaces. The computational experiment is based on the Galerkin method.

Related Organizations
Keywords

Boundary value problems for linear higher-order PDEs, Special approximation methods (nonlinear Galerkin, etc.) for infinite-dimensional dissipative dynamical systems, Flows in porous media; filtration; seepage, Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs, stability, PDEs in connection with fluid mechanics, Galerkin method, Stability problems for infinite-dimensional dissipative dynamical systems, Sobolev-type equations

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
gold