Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Advances in Differen...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Advances in Difference Equations
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Advances in Difference Equations
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Advances in Difference Equations
Article . 2021
Data sources: DOAJ
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2021
Data sources: zbMATH Open
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On zeros and growth of solutions of complex difference equations

Authors: Min-Feng Chen; Ning Cui;

On zeros and growth of solutions of complex difference equations

Abstract

AbstractLet f be an entire function of finite order, let $n\geq 1$ n ≥ 1 , $m\geq 1$ m ≥ 1 , $L(z,f)\not \equiv 0$ L ( z , f ) ≢ 0 be a linear difference polynomial of f with small meromorphic coefficients, and $P_{d}(z,f)\not \equiv 0$ P d ( z , f ) ≢ 0 be a difference polynomial in f of degree $d\leq n-1$ d ≤ n − 1 with small meromorphic coefficients. We consider the growth and zeros of $f^{n}(z)L^{m}(z,f)+P_{d}(z,f)$ f n ( z ) L m ( z , f ) + P d ( z , f ) . And some counterexamples are given to show that Theorem 3.1 proved by I. Laine (J. Math. Anal. Appl. 469:808–826, 2019) is not valid. In addition, we study meromorphic solutions to the difference equation of type $f^{n}(z)+P_{d}(z,f)=p_{1}e^{\alpha _{1}z}+p_{2}e^{\alpha _{2}z}$ f n ( z ) + P d ( z , f ) = p 1 e α 1 z + p 2 e α 2 z , where $n\geq 2$ n ≥ 2 , $P_{d}(z,f)\not \equiv 0$ P d ( z , f ) ≢ 0 is a difference polynomial in f of degree $d\leq n-2$ d ≤ n − 2 with small mromorphic coefficients, $p_{i}$ p i , $\alpha _{i}$ α i ($i=1,2$ i = 1 , 2 ) are nonzero constants such that $\alpha _{1}\neq \alpha _{2}$ α 1 ≠ α 2 . Our results are improvements and complements of Laine 2019, Latreuch 2017, Liu and Mao 2018.

Related Organizations
Keywords

Difference equations, growth, Growth, difference equations, Value distribution of meromorphic functions of one complex variable, Nevanlinna theory, Zeros, QA1-939, Difference equations in the complex domain, zeros, Meromorphic solution, Mathematics, meromorphic solution

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold