
AbstractLet f be an entire function of finite order, let $n\geq 1$ n ≥ 1 , $m\geq 1$ m ≥ 1 , $L(z,f)\not \equiv 0$ L ( z , f ) ≢ 0 be a linear difference polynomial of f with small meromorphic coefficients, and $P_{d}(z,f)\not \equiv 0$ P d ( z , f ) ≢ 0 be a difference polynomial in f of degree $d\leq n-1$ d ≤ n − 1 with small meromorphic coefficients. We consider the growth and zeros of $f^{n}(z)L^{m}(z,f)+P_{d}(z,f)$ f n ( z ) L m ( z , f ) + P d ( z , f ) . And some counterexamples are given to show that Theorem 3.1 proved by I. Laine (J. Math. Anal. Appl. 469:808–826, 2019) is not valid. In addition, we study meromorphic solutions to the difference equation of type $f^{n}(z)+P_{d}(z,f)=p_{1}e^{\alpha _{1}z}+p_{2}e^{\alpha _{2}z}$ f n ( z ) + P d ( z , f ) = p 1 e α 1 z + p 2 e α 2 z , where $n\geq 2$ n ≥ 2 , $P_{d}(z,f)\not \equiv 0$ P d ( z , f ) ≢ 0 is a difference polynomial in f of degree $d\leq n-2$ d ≤ n − 2 with small mromorphic coefficients, $p_{i}$ p i , $\alpha _{i}$ α i ($i=1,2$ i = 1 , 2 ) are nonzero constants such that $\alpha _{1}\neq \alpha _{2}$ α 1 ≠ α 2 . Our results are improvements and complements of Laine 2019, Latreuch 2017, Liu and Mao 2018.
Difference equations, growth, Growth, difference equations, Value distribution of meromorphic functions of one complex variable, Nevanlinna theory, Zeros, QA1-939, Difference equations in the complex domain, zeros, Meromorphic solution, Mathematics, meromorphic solution
Difference equations, growth, Growth, difference equations, Value distribution of meromorphic functions of one complex variable, Nevanlinna theory, Zeros, QA1-939, Difference equations in the complex domain, zeros, Meromorphic solution, Mathematics, meromorphic solution
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
