
arXiv: 1808.08172
Parallel implementations of linear iterative solvers generally alternate between phases of data exchange and phases of local computation. Increasingly large problem sizes on more heterogeneous systems make load balancing and network layout very challenging tasks. In particular, global communication patterns such as inner products become increasingly limiting at scale. We explore the use of asynchronous communication based on one-sided MPI primitives in a multitude of domain decomposition solvers. In particular, a scalable asynchronous two-level method is presented. We discuss practical issues encountered in the development of a scalable solver and show experimental results obtained on state-of-the-art supercomputer systems that illustrate the benefits of asynchronous solvers in load balanced as well as load imbalanced scenarios. Using the novel method, we can observe speed-ups of up to 4x over its classical synchronous equivalent.
FOS: Computer and information sciences, Computer Science - Distributed, Parallel, and Cluster Computing, FOS: Mathematics, 68W10, 65Y05, 68W15, 65N55, Mathematics - Numerical Analysis, Numerical Analysis (math.NA), Distributed, Parallel, and Cluster Computing (cs.DC)
FOS: Computer and information sciences, Computer Science - Distributed, Parallel, and Cluster Computing, FOS: Mathematics, 68W10, 65Y05, 68W15, 65N55, Mathematics - Numerical Analysis, Numerical Analysis (math.NA), Distributed, Parallel, and Cluster Computing (cs.DC)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
