Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Algebraarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Algebra
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Algebra
Article . 2018 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2018
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2016
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Uniform Harbourne–Huneke bounds via flat extensions

Uniform Harbourne-Huneke bounds via flat extensions
Authors: Robert M. Walker;

Uniform Harbourne–Huneke bounds via flat extensions

Abstract

Over an arbitrary field $\mathbb{F}$, Harbourne conjectured that $$I^{(N (r-1)+1)} \subseteq I^r$$ for all $r>0$ and all homogeneous ideals $I$ in $S = \mathbb{F} [\mathbb{P}^N] = \mathbb{F} [x_0, \ldots, x_N]$. The conjecture has been disproven for select values of $N \ge 2$: first by Dumnicki, Szemberg, and Tutaj-Gasińska in characteristic zero, and then by Harbourne and Seceleanu in odd positive characteristic. However, the ideal containments above do hold when, for instance, $I$ is a monomial ideal in $S$. As a sequel to (arXiv:1510.02993), we present criteria for containments of type $I^{(N (r-1)+1)} \subseteq I^r$ for all $r>0$ and certain classes of ideals $I$ in a prodigious class of normal rings. Of particular interest is a result for monomial primes in tensor products of affine semigroup rings. Indeed, we explain how to give effective multipliers $N$ in several cases including: the $D$-th Veronese subring of any polynomial ring $\mathbb{F} [x_1, \ldots, x_n]$ $(n \ge 1)$; and the extension ring $\mathbb{F} [x_1, \ldots, x_n, z]/(z^D - x_1 \cdots x_n)$ of $\mathbb{F}[x_1, \ldots, x_n]$.

For Version 2: 19 pages, material in several sections of the paper have been re-written and re-grouped. The preliminaries for divisor class groups and for toric algebra have been updated to include results from Robert M. Fossum's book and, e.g., Fulton's book, respectively. We updated the bibliography to include some additional references. To appear in the Journal of Algebra

Keywords

normal toric ring, Special types (Cohen-Macaulay, Gorenstein, Buchsbaum, etc.), Mathematics - Commutative Algebra, Commutative Algebra (math.AC), Mathematics - Algebraic Geometry, 13H10, 14C20, 14M25, symbolic powers, FOS: Mathematics, Divisors, linear systems, invertible sheaves, divisor class group, Toric varieties, Newton polyhedra, Okounkov bodies, flat extensions, Algebraic Geometry (math.AG)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Green
bronze