Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Medical E...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Medical Entomology
Article
License: implied-oa
Data sources: UnpayWall
Journal of Medical Entomology
Article . 2005 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

Remote Sensing (Normalized Difference Vegetation Index) Classification of Risk Versus Minimal Risk Habitats for Human Exposure toIxodes pacificus(Acari: Ixodidae) Nymphs in Mendocino County, California

Authors: Rebecca J, Eisen; Lars, Eisen; Robert S, Lane;

Remote Sensing (Normalized Difference Vegetation Index) Classification of Risk Versus Minimal Risk Habitats for Human Exposure toIxodes pacificus(Acari: Ixodidae) Nymphs in Mendocino County, California

Abstract

In California, Ixodes pacificus Cooley & Kohls nymphs have been implicated as the primary bridging vectors to humans of the spirochetal bacterium causing Lyme disease (Borrelia burgdorferi). Because the nymphs typically do not ascend emergent vegetation, risk of human exposure is minimal in grasslands, chaparral, and woodland-grass. Instead, woodlands with a ground cover dominated by leaf litter (hereinafter referred to as woodland-leaf) have emerged as a primary risk habitat for exposure to B. burgdorferi-infected nymphs. As a means of differentiating woodland-leaf habitats from others with minimal risk (e.g., chaparral, grassland, and woodland-grass), we constructed a maximum likelihood model of these habitat types within a 7,711-ha area in southeastern Mendocino County based on the normalized difference vegetation index derived from Landsat 5 Thematic Mapper imagery (based on a 30 by 30-m pixel size) over four seasons. The overall accuracy of the model to discriminate woodland-leaf, woodland-grass, open grassland, and chaparral was 83.85% (Kappa coefficient of 0.78). Validation of the accuracy of the model to classify woodland-leaf yielded high values both for producer accuracy (93.33% of validated woodland-leaf pixels correctly classified by the model) and user accuracy (96.55% of model-classified validation pixels correctly categorized as woodland-leaf). Woodland-leaf habitats were found to be highly aggregated within the examined area. In conclusion, our model successfully used remotely sensed data as a predictor of habitats where humans are at risk for Lyme disease in the far-western United States.

Related Organizations
Keywords

Nymph, Lyme Disease, Ixodes, Environment, California, Insect Vectors, Risk Factors, Borrelia burgdorferi, Animals, Humans

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Average
Average
Top 10%
hybrid