Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ACM Transactions on ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://epubs.siam.org/doi/pdf...
Part of book or chapter of book
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1137/1.9781...
Part of book or chapter of book . 2019 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2017
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Article
Data sources: DBLP
DBLP
Conference object
Data sources: DBLP
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Oblivious Resampling Oracles and Parallel Algorithms for the Lopsided Lovász Local Lemma

Authors: David G. Harris 0001;

Oblivious Resampling Oracles and Parallel Algorithms for the Lopsided Lovász Local Lemma

Abstract

The Lovász Local Lemma (LLL) shows that, for a collection of “bad” events B in a probability space that are not too likely and not too interdependent, there is a positive probability that no events in B occur. Moser and Tardos (2010) gave sequential and parallel algorithms that transformed most applications of the variable-assignment LLL into efficient algorithms. A framework of Harvey and Vondrák (2015) based on “resampling oracles” extended this to sequential algorithms for other probability spaces satisfying a generalization of the LLL known as the Lopsided Lovász Local Lemma (LLLL). We describe a new structural property that holds for most known resampling oracles, which we call “obliviousness.” Essentially, it means that the interaction between two bad-events B , B ′ depends only on the randomness used to resample B and not the precise state within B itself. This property has two major consequences. First, combined with a framework of Kolmogorov (2016), it leads to a unified parallel LLLL algorithm, which is faster than previous, problem-specific algorithms of Harris (2016) for the variable-assignment LLLL and of Harris and Srinivasan (2014) for permutations. This gives the first RNC algorithms for rainbow perfect matchings and rainbow Hamiltonian cycles of K n . Second, this property allows us to build LLLL probability spaces from simpler “atomic” events. This gives the first resampling oracle for rainbow perfect matchings on the complete s -uniform hypergraph K n ( s ) and the first commutative resampling oracle for Hamiltonian cycles of K n .

Keywords

FOS: Computer and information sciences, Discrete Mathematics (cs.DM), Computer Science - Data Structures and Algorithms, FOS: Mathematics, Mathematics - Combinatorics, Data Structures and Algorithms (cs.DS), Combinatorics (math.CO), Computer Science - Discrete Mathematics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Average
Green
bronze