
Ultra-intense short-pulse lasers are important tools for creating short-lived high energy plasmas, however to date, it has not been possible, with this method, to create several hundred eV solid density matter because of the rapid transport of the laser-generated hot electrons throughout the target volume. We propose a new way to isochorically heat matter at solid density to extreme temperatures by magnetic confinement of laser-generated hot electrons for several picoseconds by application of a multi-MG external field. In advance of an experiment at the Nevada Terawatt Facility (NTF), using a 100 TW-class laser, which will be synchronized to a IMA Z-pinch machine, we have performed theoretical studies using a collisional particle-in-cell codes PICLS, which is optimized for a study of isochoric heating of solid density plasmas.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
