Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Progress in Photovol...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Progress in Photovoltaics Research and Applications
Article . 2011 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A mechanism of solar cell degradation in high intensity, high temperature space missions

Authors: C. G. Zimmermann; C. Nömayr; M. Kolb; A. Rucki;

A mechanism of solar cell degradation in high intensity, high temperature space missions

Abstract

ABSTRACTThe behavior of standard space photovoltaic assemblies in a high intensity, high temperature environment (HIHT) is addressed. Experimentally, an HIHT environment, typical for missions to the inner planets of the solar system such as Mercury, characterized by temperatures of 500K and 11 solar constant irradiance in the ultraviolet region below 400 nm, was simulated in a vacuum. Independently of the triple junction cell technology used, module degradation up to 20% in power was observed during several hundred hours of test. Electroluminescence analysis identified discrete top cell shunts close to the cell edge, in particular around the frontside contact pads. Cross‐sectional transmission electron microscopy performed on several degraded cells revealed an etched contact pad metallization/cap layer interface and more importantly, several 100‐nm large, oriented Cu3P inclusions at the shunted locations. A chemical degradation mechanism is proposed. Short wavelength ultraviolet light interacting with polysiloxanes used as module encapsulant produces hydrogen and methyl radicals. With these building blocks, an organic acid can be formed on external reaction surfaces such as the Ag busbars that simultaneously serve as a source of oxygen. Cu traces present in the Ag segregate to the surface and are transported by this acid to the contact pad of the cell in the liquid phase. An adapted cell design was developed to prevent this degradation mechanism believed to be of relevance for all HIHT space environments. A several hundred micrometer‐wide rim composed of the outermost cell area is electrically separated from the inner cell area and provides a barrier against environmental attack. None of the photovoltaic assemblies featuring this mesa cell design showed any fill factor‐induced power degradation any more. Copyright © 2011 John Wiley & Sons, Ltd.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!