Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

MinPD: distance-based phylogenic anlysis and recombination detection of serially-sampled HIV quasispecies

Authors: Patricia, Buendia; Giri, Narasimhan;

MinPD: distance-based phylogenic anlysis and recombination detection of serially-sampled HIV quasispecies

Abstract

A new computational method to study within-host viral evolution is explored to better understand the evolution and pathogenesis of viruses. Traditional phylogenetic tree methods are better suited to study relationships between contemporaneous species, which appear as leaves of a phylogenetic tree. However, viral sequences are often sampled serially from a single host. Consequently, data may be available at the leaves as well as the internal nodes of a phylogenetic tree. Recombination may further complicate the analysis. Such relationships are not easily expressed by traditional phylogenetic methods. We propose a new algorithm, called MinPD, based on minimum pairwise distances. Our algorithm uses multiple distance matrices and correlation rules to output a MinPD tree or network. We test our algorithm using extensive simmulations and apply it to a set of HIV sequence data isolated from one patient over a period of ten years. The proposed visualization of the phylogenetic tree\network further enhances the benefits of our methods.

Related Organizations
Keywords

Recombination, Genetic, Chromosome Mapping, HIV, Sequence Analysis, DNA, Linkage Disequilibrium, Evolution, Molecular, Species Specificity, DNA, Viral, Sequence Alignment, Algorithms, Phylogeny

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!