Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2018
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Exact asymptotics for a multi-timescale model, with applications in modeling overdispersed customer streams

Authors: Heemskerk, Mariska; Mandjes, Michel;

Exact asymptotics for a multi-timescale model, with applications in modeling overdispersed customer streams

Abstract

In this paper we study the probability $��_n(u):={\mathbb P}\left(C_n\geqslant u n \right)$, with $C_n:=A(��_n B(��_n))$ for L��vy processes $A(\cdot)$ and $B(\cdot)$, and $��_n$ and $��_n$ non-negative sequences such that $��_n ��_n =n$ and $��_n\to\infty$ as $n\to\infty$. Two timescale regimes are distinguished: a `fast' regime in which $��_n$ is superlinear and a `slow' regime in which $��_n$ is sublinear. We provide the exact asymptotics of $��_n(u)$ (as $n\to\infty$) for both regimes, relying on change-of-measure arguments in combination with Edgeworth-type estimates. The asymptotics have an unconventional form: the exponent contains the commonly observed linear term, but may also contain sublinear terms (the number of which depends on the precise form of $��_n$ and $��_n$). To showcase the power of our results we include two examples, covering both the case where $C_n$ is lattice and non-lattice. Finally we present numerical experiments that demonstrate the importance of taking into account the doubly stochastic nature of $C_n$ in a practical application related to customer streams in service systems; they show that the asymptotic results obtained yield highly accurate approximations, also in scenarios in which there is no pronounced timescale separation.

25 pages, no figures

Keywords

Probability (math.PR), FOS: Mathematics, 60F10, 60G51, 60K37,, Mathematics - Probability

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green