Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Networks of genes modulating the pleiotropic drug response in Saccharomyces cerevisiae

Authors: David R. Maass; Ploi Yibmantasiri; David S. Bellows; Paul H. Atkinson; Peter W. Bircham;

Networks of genes modulating the pleiotropic drug response in Saccharomyces cerevisiae

Abstract

The pleiotropic drug response (PDR) or multidrug resistance (MDR) are cellular defence mechanisms present in all species to deal with potential toxicity from environmental small molecule toxins or bioactives. The rapid induction of MDR by xenobiotics in mammalian cells and PDR in budding yeast (S. cerevisiae) has been well studied but how pathway specificity is achieved across different structural classes of xenobiotics is not well understood. As a novel approach to this problem we investigated the genome-wide network of genes modulating the yeast PDR. Fluorescently-tagged ABC pumps Pdr5p-GFP and Yor1p-GFP were used as real-time reporters for the Pdr1p/Pdr3p controlled response. Using the yeast non-essential gene deletion set fifty-four gene deletions that suppressed up-regulation of reporter fluorescence to the cell surface in the presence of atorvastatin were identified by high content confocal automated microscopy. Secondary validation using spot dilution assays to known PDR substrates and Western blot assays of Pdr5p expression confirmed 26 genes able to modulate the PDR phenotype. By analysis of network connectivity, an additional 10 genes that fell below the primary screen cut-off were predicted to be involved in PDR and confirmed as above. The PDR modulating genes taken together were enriched in signalling (Rho-GTPase, MAPK), Mediator complexes, and chromatin modification (subunits of ADA and SAGA complexes). Many of the gene deletions cause extra sensitivity in Δpdr1Δpdr3 strains strongly suggesting that there are alternative pathways to upregulate PDR, independently of Pdr1p/Pdr3p. We present here the first high-content microscopy screening for PDR modulators, and identify genes that are previously unsuspected regulators of PDR apparently contributing via network interactions.

Related Organizations
Keywords

Saccharomyces cerevisiae Proteins, Transcription, Genetic, Saccharomyces cerevisiae, Drug Resistance, Multiple, DNA-Binding Proteins, Heptanoic Acids, Gene Expression Regulation, Fungal, Atorvastatin, ATP-Binding Cassette Transporters, Gene Regulatory Networks, Pyrroles, Gene Deletion, Signal Transduction, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Top 10%
Average
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?