Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2018
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2016
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Article
Data sources: DBLP
DBLP
Article
Data sources: DBLP
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Checking Dynamic Consistency of Conditional Hyper Temporal Networks via Mean Payoff Games (Hardness and (pseudo) Singly-Exponential Time Algorithm)

Checking dynamic consistency of conditional hyper temporal networks via mean payoff games. Hardness and (pseudo) singly-exponential time algorithm
Authors: Comin, Carlo; Rizzi, Romeo;

Checking Dynamic Consistency of Conditional Hyper Temporal Networks via Mean Payoff Games (Hardness and (pseudo) Singly-Exponential Time Algorithm)

Abstract

In this work we introduce the \emph{Conditional Hyper Temporal Network (CHyTN)} model, which is a natural extension and generalization of both the \CSTN and the \HTN model. Our contribution goes as follows. We show that deciding whether a given \CSTN or CHyTN is dynamically consistent is \coNP-hard. Then, we offer a proof that deciding whether a given CHyTN is dynamically consistent is \PSPACE-hard, provided that the input instances are allowed to include both multi-head and multi-tail hyperarcs. In light of this, we continue our study by focusing on CHyTNs that allow only multi-head or only multi-tail hyperarcs, and we offer the first deterministic (pseudo) singly-exponential time algorithm for the problem of checking the dynamic-consistency of such CHyTNs, also producing a dynamic execution strategy whenever the input CHyTN is dynamically consistent. Since \CSTN{s} are a special case of CHyTNs, this provides as a byproduct the first sound-and-complete (pseudo) singly-exponential time algorithm for checking dynamic-consistency in CSTNs. The proposed algorithm is based on a novel connection between CSTN{s}/CHyTN{s} and Mean Payoff Games. The presentation of the connection between \CSTN{s}/CHyTNs and \MPG{s} is mediated by the \HTN model. In order to analyze the algorithm, we introduce a refined notion of dynamic-consistency, named $��$-dynamic-consistency, and present a sharp lower bounding analysis on the critical value of the reaction time $\hat{\varepsilon}$ where a \CSTN/CHyTN transits from being, to not being, dynamically consistent. The proof technique introduced in this analysis of $\hat{\varepsilon}$ is applicable more generally when dealing with linear difference constraints which include strict inequalities.

arXiv admin note: text overlap with arXiv:1505.00828

Country
France
Keywords

reaction time, FOS: Computer and information sciences, Analysis of algorithms and problem complexity, conditional temporal networks, Conditional Temporal Networks, [INFO.INFO-DS] Computer Science [cs]/Data Structures and Algorithms [cs.DS], Hyper Temporal Networks, Computational Complexity (cs.CC), Mean Payoff Games, Simple Temporal Networks, dynamic consistency, mean payoff games, Computer Science - Computational Complexity, hyper-temporal networks, Dynamic Consistency, Reaction Time, Computational difficulty of problems (lower bounds, completeness, difficulty of approximation, etc.), simple temporal networks, [INFO.INFO-CC] Computer Science [cs]/Computational Complexity [cs.CC], singly-exponential time, Games involving graphs, Singly-Exponential Time, Problem solving in the context of artificial intelligence (heuristics, search strategies, etc.)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green