
doi: 10.1155/2014/547673
We provide a method of approximation of approximate solutions of functional equations in the class of functions acting into a Riesz space (algebra). The main aim of the paper is to provide a general theorem that can act as a tool applicable to a possibly wide class of functional equations. The idea is based on the use of the Spectral Representation Theory for Riesz spaces. The main result will be applied to prove the stability of an alternative Cauchy functional equationF(x+y)+F(x)+F(y)≠0⇒F(x+y)=F(x)+F(y)in Riesz spaces, the Cauchy equation with squaresF(x+y)2=(F(x)+F(y))2inf-algebras, and the quadratic functional equationF(x+y)+F(x-y)=2F(x)+2F(y)in Riesz spaces.
Orthogonal additivity and other conditional functional equations, QA1-939, Stability, separation, extension, and related topics for functional equations, Functional equations for functions with more general domains and/or ranges, Mathematics
Orthogonal additivity and other conditional functional equations, QA1-939, Stability, separation, extension, and related topics for functional equations, Functional equations for functions with more general domains and/or ranges, Mathematics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
