
A new algorithm is presented for computing a canonical rank-R tensor approximation that has minimal distance to a given tensor in the Frobenius norm, where the canonical rank-R tensor consists of the sum of R rank-one components. Each iteration of the method consists of three steps. In the first step, a tentative new iterate is generated by a stand-alone one-step process, for which we use alternating least squares (ALS). In the second step, an accelerated iterate is generated by a nonlinear generalized minimal residual (GMRES) approach, recombining previous iterates in an optimal way, and essentially using the stand-alone one-step process as a preconditioner. In particular, the nonlinear extension of GMRES is used that was proposed by Washio and Oosterlee in [ETNA Vol. 15 (2003), pp. 165-185] for nonlinear partial differential equation problems. In the third step, a line search is performed for globalization. The resulting nonlinear GMRES (N-GMRES) optimization algorithm is applied to dense and sparse tensor decomposition test problems. The numerical tests show that ALS accelerated by N-GMRES may significantly outperform both stand-alone ALS and a standard nonlinear conjugate gradient optimization method, especially when highly accurate stationary points are desired for difficult problems. The proposed N-GMRES optimization algorithm is based on general concepts and may be applied to other nonlinear optimization problems.
FOS: Mathematics, Mathematics - Numerical Analysis, Numerical Analysis (math.NA)
FOS: Mathematics, Mathematics - Numerical Analysis, Numerical Analysis (math.NA)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 38 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
