Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ e-Prints Sotonarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A transferable method for estimating the economic impacts of track interventions: Application to ground-borne noise reduction measures for whole sections of route

Authors: Marcus Young; Georgios Rempelos; Evangelos Ntotsios; Simon Blainey; David Thompson; John Preston;

A transferable method for estimating the economic impacts of track interventions: Application to ground-borne noise reduction measures for whole sections of route

Abstract

The environmental impacts of noise and vibration are becoming increasingly important in the assessment of new and upgraded railway routes. Vibration from railways propagates through the ground to nearby buildings where it may cause annoyance as feelable vibration or as re-radiated noise. To tackle the adverse effects of ground-borne noise a range of possible interventions are available, including softer rail pads, under-sleeper pads and under-ballast mats. The installation costs of such interventions are generally higher for the higher-performing track types. Additionally, there are potential effects on track maintenance costs which may be positive or negative, for example by reducing sleeper damage or increasing the need for ballast tamping. This study presents a socio-economic analysis of the effects of several interventions to reduce ground-borne noise. By selecting a whole route, the installation and whole-life costs are assessed using Network Rail’s Vehicle-Track Interaction Strategic Model (VTISM) and these are offset against benefits in terms of reduced social costs. Ground-borne noise is predicted at various distances from the alignment using the Modelling of Train Induced Vibration (MOTIV) model and the effect of track interventions is determined as insertion loss spectra. The re-radiated noise within a typical domestic building is then estimated using generic building transfer functions. Geographic Information System tools are used to estimate the population affected by ground-borne noise and their expected level of exposure. The methodology is illustrated using a case study route between Brighton and Portsmouth in the South of England.

Country
United Kingdom
Related Organizations
Keywords

624

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Green
hybrid