Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Opticsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Optics
Article . 2014 . Peer-reviewed
Data sources: Crossref
Applied Optics
Article . 2015
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Security analysis of phase-only DRPE based on known-plaintext attack using multiple known plaintext–ciphertext pairs

Authors: Kazuya Nakano; Masafumi Takeda; Hiroyuki Suzuki; Masahiro Yamaguchi;

Security analysis of phase-only DRPE based on known-plaintext attack using multiple known plaintext–ciphertext pairs

Abstract

Classical double-random phase encoding (C-DRPE) is an optical symmetric-key encryption technique. C-DRPE is reported to be vulnerable to a known-plaintext attack (KPA) that uses a phase retrieval algorithm. However, although phase-only DRPE (PO-DRPE) is reported to be more resistant to KPAs than C-DRPE, it is not obvious yet that PO-DRPE is sufficiently resistant to a KPA under any condition, because the vulnerability to KPA varies depending on various factors, such as the number of the known plaintext-ciphertext pairs that are given for the KPA, or the gray level of the known-plaintext image (i.e., binary or multivalued image). In this paper, we investigate the resistance of C-DRPE and PO-DRPE to KPA under various conditions related to the number of known plaintext-ciphertext pairs and to the gray level of the known-plaintext image.

Keywords

004

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!