Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/bracis...
Article . 2015 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Multiobjective Binary ACO for Unconstrained Binary Quadratic Programming

Authors: Murilo Zangari De Souza; Aurora Trinidad Ramirez Pozo;

Multiobjective Binary ACO for Unconstrained Binary Quadratic Programming

Abstract

The Unconstrained Binary Quadratic Programming (UBQP) is a NP-hard problem able to represent a wide range of combinatorial optimization problems. The problem has grown in importance due to its potential application and its computational challenge. Recently, the problem was extended to multiobjective case (mUBQP). On the other hand, Ant Colony Optimization Algorithms (ACO) have been widely used to solve several combinatorial single and multiobjective problems. Moreover, some works have been proposed to use an ACO variation called Binary Ant Colony Optimization (BACO) due to its simple structure and achieving good results. Therefore, in this study, a Multiobjective Binary ACO based on decomposition algorithm is proposed. This algorithm, named MOEA/D-BACO, was designed using concepts of MOEA/D (Multiobjective Evolutionary Algorithm based on Decomposition) and ACO that decomposes a problem into a set of scalar optimization sub problems. Experiments have been conducted to compare MOEA/D-BACO to NSGAII and MOEA/D on a set of instances of mUBQP. The results show that the proposed algorithm outperforms NSGAII and is competitive with MOEA/D finding a good approximation to the entire Pareto front.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!