Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biochimica et Biophy...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biochimica et Biophysica Acta (BBA) - Bioenergetics
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biochimica et Biophysica Acta (BBA) - Bioenergetics
Article . 2004
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochimica et Biophysica Acta (BBA) - Bioenergetics
Article . 2004 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Apparent redundancy of electron transfer pathways via bc1 complexes and terminal oxidases in the extremophilic chemolithoautotrophic Acidithiobacillus ferrooxidans

Authors: Brasseur, G.; Levicán, Gloria; Bonnefoy, Violaine; Holmes, David S.; Jedlicki Corbeaux, Eugenia; Lemesle Meunier, D.;

Apparent redundancy of electron transfer pathways via bc1 complexes and terminal oxidases in the extremophilic chemolithoautotrophic Acidithiobacillus ferrooxidans

Abstract

Acidithiobacillus ferrooxidans is an acidophilic chemolithoautotrophic bacterium that can grow in the presence of either the weak reductant Fe(2+), or reducing sulfur compounds that provide more energy for growth than Fe(2+). We have previously shown that the uphill electron transfer pathway between Fe(2+) and NAD(+) involved a bc(1) complex that functions only in the reverse direction [J. Bacteriol. 182, (2000) 3602]. In the present work, we demonstrate both the existence of a bc(1) complex functioning in the forward direction, expressed when the cells are grown on sulfur, and the presence of two terminal oxidases, a bd and a ba(3) type oxidase expressed more in sulfur than in iron-grown cells, besides the cytochrome aa(3) that was found to be expressed only in iron-grown cells. Sulfur-grown cells exhibit a branching point for electron flow at the level of the quinol pool leading on the one hand to a bd type oxidase, and on the other hand to a bc(1)-->ba(3) pathway. We have also demonstrated the presence in the genome of transcriptionally active genes potentially encoding the subunits of a bo(3) type oxidase. A scheme for the electron transfer chains has been established that shows the existence of multiple respiratory routes to a single electron acceptor O(2). Possible reasons for these apparently redundant pathways are discussed.

Country
Chile
Keywords

CYTOCHROME-C-OXIDASE, Acidithiobacillus, Iron, Biophysics, Biochemistry, Models, Biological, Biophysical Phenomena, Substrate Specificity, Electron Transport, Electron Transport Complex III, Electron transfer chain, Acidophile, Computational Biology, Acidithiobacillus ferrooxidans, Cell Biology, Cytochrome b Group, Aerobiosis, Terminal oxidase, Oxygen, Iron and sulfur oxidation, bc1 complex, Oxidoreductases, Oxidation-Reduction, Genome, Bacterial, Sulfur

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    88
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
88
Top 10%
Top 10%
Top 10%
hybrid