Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Other ORP type . 2022
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Other ORP type . 2022
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.5281/zenodo...
Other ORP type . 2022
License: CC BY
Data sources: Sygma
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

III BioinfoCAM abstract: Detection of food-drug interactions using natural language processing techniques in the context of FNS-Cloud project

Authors: Garranzo, Marco; Laguna Lobo, Teresa; Carrillo de Santa Pau, Enrique;

III BioinfoCAM abstract: Detection of food-drug interactions using natural language processing techniques in the context of FNS-Cloud project

Abstract

Abstract communication for the III BioinfoCAM (Madrid, October 21st 2021). BioinfoCAM is a local meeting for researchers working in the bioinformatics and computational Biology fields in the Madrid region. On this occasion, due to the pandemic situation, the conference was online safely format 21th October 2021. The overall aim of the conference is to continue creating an annual forum where bioinformaticians and computational biologists meet to strength networking and collaboration between groups in the Madrid region. More details and programme of the 3rd edition in https://express.adobe.com/page/daTL3n6GyMo1Q/ Here, we present the abstract communication that it was accepted as oral communication. This communication summarizes the work done by the Computational Biology Group in IMDEA Food Institute in natural language processing developments during the FNS-Cloud project to extract information about food-drug interactions from scientific texts. About FNS-Cloud FNS-Cloud will overcome fragmentation problems by integrating existing FNS data, which is essential for high-end, pan-European FNS research, addressing FNS, diet, health, and consumer behaviours as well as on sustainable agriculture and the bio-economy. Current fragmented FNS resources not only result in knowledge gaps that inhibit public health and agricultural policy, and the food industry from developing effective solutions, making production sustainable and consumption healthier, but also do not enable exploitation of FNS knowledge for the benefit of European citizens. FNS-Cloud will, through three Demonstrators; Agri-Food, Nutrition & Lifestyle and NCDs & the Microbiome to facilitate: (1) Analyses of regional and country-specific differences in diet including nutrition, (epi)genetics, microbiota, consumer behaviours, culture and lifestyle and their effects on health (obesity, NCDs, ethnic and traditional foods), which are essential for public health and agri-food and health policies; (2) Improved understanding agricultural differences within Europe and what these means in terms of creating a sustainable, resilient food systems for healthy diets; and (3) Clear definitions of boundaries and how these affect the compositions of foods and consumer choices and, ultimately, personal and public health in the future. Long-term sustainability of the FNS-Cloud will be based on Services that have the capacity to link with new resources and enable cross-talk amongst them; access to FNS-Cloud data will be open access, underpinned by FAIR principles (findable, accessible, interoperable and re-useable). FNS-Cloud will work closely with the proposed Food, Nutrition and Health Research Infrastructure (FNHRI) as well as METROFOOD-RI and other existing ESFRI RIs (e.g. ELIXIR, ECRIN) in which several FNS-Cloud Beneficiaries are involved directly. (https://cordis.europa.eu/project/id/863059). For more information you can visit https://www.fns-cloud.eu/ Food Nutrition Security Cloud (FNS-Cloud) has received funding from the European Union’s Horizon 2020 Research and Innovation programme (H2020-EU.3.2.2.3. – A sustainable and competitive agri-food industry) under Grant Agreement No. 863059.

Keywords

food, text mining, natural language processing, interactions, drugs

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 5
    download downloads 5
  • 5
    views
    5
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
5
5