
pmid: 17997975
We report the structure of a strictly mitochondrial human synthetase, namely tyrosyl-tRNA synthetase (mt-TyrRS), in complex with an adenylate analog at 2.2 A resolution. The structure is that of an active enzyme deprived of the C-terminal S4-like domain and resembles eubacterial TyrRSs with a canonical tyrosine-binding pocket and adenylate-binding residues typical of class I synthetases. Two bulges at the enzyme surface, not seen in eubacterial TyrRSs, correspond to conserved sequences in mt-TyrRSs. The synthetase electrostatic surface potential differs from that of other TyrRSs, including the human cytoplasmic homolog and the mitochondrial one from Neurospora crassa. The homodimeric human mt-TyrRS shows an asymmetry propagating from the dimer interface toward the two catalytic sites and extremities of each subunit. Mutagenesis of the catalytic domain reveals functional importance of Ser200 in line with an involvement of A73 rather than N1-N72 in tyrosine identity.
Models, Molecular, Binding Sites, Protein Conformation, Molecular Sequence Data, Crystallography, X-Ray, Mitochondria, RNA, Transfer, Structural Biology, Tyrosine-tRNA Ligase, RNA, Humans, Amino Acid Sequence, Molecular Biology, [SDV.BC] Life Sciences [q-bio]/Cellular Biology, Sequence Alignment
Models, Molecular, Binding Sites, Protein Conformation, Molecular Sequence Data, Crystallography, X-Ray, Mitochondria, RNA, Transfer, Structural Biology, Tyrosine-tRNA Ligase, RNA, Humans, Amino Acid Sequence, Molecular Biology, [SDV.BC] Life Sciences [q-bio]/Cellular Biology, Sequence Alignment
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 51 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
