
Une famille mixte de polynômes, appelée famille de Boas-Buck-Sheffer est introduite et leurs propriétés quasi-monomiales sont établies dans cet article. Aussi, les généralisations des opérateurs de Szasz incluant cette famille polynomiale mixte sont obtenues et leur convergence est étudiée.
Se introduce una familia mixta de polinomios, llamada familia Boas-Buck-Sheffer y en este artículo se establecen sus propiedades cuasi monomiales. Asimismo, se obtienen las generalizaciones de los operadores de Szasz incluyendo esta familia polinómica mixta y se estudia su convergencia.
A mixed family of polynomials, called the Boas-Buck-Sheffer family is introduced and their quasi-monomial properties are established in this article. Also, the generalizations of the Szasz operators including this mixed polynomial family are obtained and their convergence is studied.
يتم تقديم عائلة مختلطة من متعددات الحدود، تسمى عائلة بواس باك شيفر ويتم تحديد خصائصها شبه المونومية في هذه المقالة. أيضًا، يتم الحصول على تعميمات مشغلي Szasz بما في ذلك هذه العائلة متعددة الحدود المختلطة ودراسة تقاربها.
Statistics and Probability, Orthogonal polynomials, Economics, Arithmetic of Multiple Zeta Values and Related Functions, Matrix Valued Polynomials, Polynomial, Mathematical analysis, Orthogonal Polynomials, Boas-Buck polynomials, Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.), Monomial, Discrete orthogonal polynomials, QA1-939, FOS: Mathematics, Szasz operators, Umbral calculus, Economic growth, Algebra over a field, Algebra and Number Theory, Applied Mathematics, Classical orthogonal polynomials, Statistical Convergence in Approximation Theory and Functional Analysis, Pure mathematics, szasz operators, monomiality principle, boas-buck polynomials, Physical Sciences, Convergence (economics), Mathematics
Statistics and Probability, Orthogonal polynomials, Economics, Arithmetic of Multiple Zeta Values and Related Functions, Matrix Valued Polynomials, Polynomial, Mathematical analysis, Orthogonal Polynomials, Boas-Buck polynomials, Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.), Monomial, Discrete orthogonal polynomials, QA1-939, FOS: Mathematics, Szasz operators, Umbral calculus, Economic growth, Algebra over a field, Algebra and Number Theory, Applied Mathematics, Classical orthogonal polynomials, Statistical Convergence in Approximation Theory and Functional Analysis, Pure mathematics, szasz operators, monomiality principle, boas-buck polynomials, Physical Sciences, Convergence (economics), Mathematics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
