Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Algebraarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Algebra
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Algebra
Article . 2003
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Algebra
Article . 2003 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Phan-type theorem for Sp(2n,q)

Authors: Gramlich, R.; Hoffman, C.; Shpectorov, S.V.;

A Phan-type theorem for Sp(2n,q)

Abstract

In 1977 Kok-Wee Phan published a theorem (see [4]) on generation of the special unitary group SU(n+ 1, q2) by a system of its subgroups isomorphic to SU(3, q2). This theorem is similar in spirit to the famous Curtis–Tits theorem. In fact, both the Curtis–Tits theorem and Phan’s theorem were used as principal identification tools in the classification of finite simple groups. The proof of Phan’s theorem given in his 1977 paper is somewhat incomplete. This motivated Bennett and Shpectorov [1] to revise Phan’s paper and provide a new and complete proof of his theorem. They used an approach based on the concepts of diagram geometries and amalgams of groups. It turned out that Phan’s configuration arises as the amalgam of rank two parabolics in the flag-transitive action of SU(n + 1, q2) on the geometry of nondegenerate subspaces of the underlying unitary space. This point of view leads to a twofold interpretation of Phan’s theorem: its complete proof must include (1) a classification of related amalgams; and (2) a verification that—apart from some small exceptional cases—the above geometry is simply connected. These two parts are tied together by a lemma due to Tits, that implies that if a group G acts flag-transitively on a simply connected geometry then the corresponding amalgam of maximal parabolics provides a presentation for G, see Proposition 7.1. The Curtis–Tits theorem can also be restated in similar geometric terms. Let G be a Chevalley group. Then G acts on a spherical building B and also on the corresponding twin building B = (B+,B−, d∗). (Here B+ ∼= B ∼= B− and d∗ is a codistance between

Country
Netherlands
Keywords

Algebra and Number Theory

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Average
Top 10%
Average
hybrid