
Let A be the array of n integers in {0, 1, …, n-1}. A tree is constructed in O(nloglogm/p+loglogm) time with p processors based on the trie with all the given integers. Additional nodes (O(nloglogm) of them) are added to the tree. After the tree is construct we can, for any given integer, find the predecessor and successor of this integer, insert or delete the integer in A in O(loglogm) time. This result demonstrates for the searching purpose we need not to sort the input numbers into a sorted array for this would need at least O(logn/loglogn) time while this algorithm for constructing the tree can run in O(loglogm) time with n processors.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
