Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao zbMATH Openarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2005
Data sources: zbMATH Open
Algebra Colloquium
Article . 2005 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On (m,n)-Injective Modules and (m,n)-Coherent Rings

On \((m,n)\)-injective modules and \((m,n)\)-coherent rings.
Authors: Zhang, Xiaoxiang; Chen, Jianlong; Zhang, Juan;

On (m,n)-Injective Modules and (m,n)-Coherent Rings

Abstract

Let R be a ring. For two fixed positive integers m and n, a right R-module M is called (m,n)-injective in case every right R-homomorphism from an n-generated submodule of Rm to M extends to one from Rm to M. R is said to be left (m,n)-coherent if each n-generated submodule of the left R-module Rm is finitely presented. In this paper, we give some new characterizations of (m,n)-injective modules. We also derive various equivalent conditions for a ring to be left (m,n)-coherent. Some known results on coherent rings are obtained as corollaries.

Related Organizations
Keywords

\((m,n)\)-coherent rings, Injective modules, self-injective associative rings, Chain conditions on other classes of submodules, ideals, subrings, etc.; coherence (associative rings and algebras), finitely presented modules, \((m,n)\)-injective modules, \((m,n)\)-flat modules

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Top 10%
Average
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!