
In this paper, complementary split ring resonator (SRR) based reflector to enhance the printed slot dipole (PSD) antenna performance is introduced. The numerically calculated return-loss, directivity and radiation pattern results of the PSD antenna, with (w/) and without (w/o) CSRR element etched on reflector plane are presented and investigated. Numerical analysis and modelling of the proposed design are carried out using CST Microwave Studio simulator based on the finite integration technique. According to the simulation results, with the inclusion of the CSRR-based reflector into the PSD antenna, the directivity is increased by values changes from 0.6 dB to 4.25 dB through the operation band, while an improvement in bandwidth (~2.1%) is seen. It is also shown that this improvement in antenna performance is due to the -negative (ENG) behavior of CSRR structures. Prototype of the proposed antenna is fabricated using Arlon DiClad 880 substrate with electrical permittivity ofεr= 2.2. A quite good agreement between simulation and measurement is obtained. In this study, it is shown that the radiation performance of the antenna can be increased easily by using the CSRR element as a reflector in the antenna structure with a new enhancement approach. Also, the proposed antenna with a compact size of 0.27λ× 0.41λ is appropriate for operating in IEEE 802.11b/g/n/ax (2.4 GHz) WLAN applications.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
