
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>The 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) model leads to chronic cholestatic liver injury and therefore resembles human diseases such as sclerosing cholangitis and forms of metabolic liver diseases. The role of the interleukin-6/glycoprotein 130 (gp130) system in this context is still undefined. Therefore, conditional gp130 knockout and knockin mice were used to achieve hepatocyte-specific deletions of gp130 (gp130(Deltahepa)), gp130-dependent ras (gp130(DeltahepaRas)), and signal transducer and activator of transcription (STAT) (gp130(DeltahepaSTAT)) activation. These mice were treated with a DDC-containing diet and analyzed over time. Mice deficient in hepatic gp130 and STAT signaling showed increased and earlier mortality than wild-type and gp130(DeltahepaRas) animals. Over time, significantly more apoptosis and cholestasis became evident in gp130(Deltahepa) and gp130(DeltahepaSTAT) mice. These mice also displayed increased tumor necrosis factor-alpha expression, a diminished acute-phase response (lack of STAT3 and serum amyloid A activation), and enhanced immune cell infiltration in the liver. These were associated with stronger periportal oval cell activation. In addition, DDC treatment in gp130(Deltahepa) and gp130(DeltahepaSTAT) mice resulted in significantly stronger hepatic stellate cell activation. Long-term analysis revealed the development of severe liver fibrosis in gp130(Deltahepa) and gp130(DeltahepaSTAT) animals, as evidenced by increased collagen accumulation. Here we demonstrate that gp130/STAT signaling in hepatocytes provides protection in a cholestatic hepatitis mouse model. STAT3-dependent signaling pathways in hepatocytes protect from apoptosis and tissue injury, which subsequently reduce oval cell activation and prevent fibrosis progression.
Male, STAT3 Transcription Factor, Cholestasis, Cholangitis, Sclerosing, Apoptosis, Mice, Transgenic, Fibrosis, Mice, Liver, Cytokine Receptor gp130, Disease Progression, Hepatocytes, Animals, Alleles, Signal Transduction
Male, STAT3 Transcription Factor, Cholestasis, Cholangitis, Sclerosing, Apoptosis, Mice, Transgenic, Fibrosis, Mice, Liver, Cytokine Receptor gp130, Disease Progression, Hepatocytes, Animals, Alleles, Signal Transduction
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 45 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
