Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Agronomy Journalarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Agronomy Journal
Article . 1981 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mechanical Impedance Effects on Oxygen Uptake and Porosity of Drybean Roots1

Authors: T. E. Schumacher; A. J. M. Smucker;

Mechanical Impedance Effects on Oxygen Uptake and Porosity of Drybean Roots1

Abstract

AbstractLow oxygen concentrations and mechanical impedance are two components of soil compaction often implicated in the reduction of crop yields. The relative importance of these two stresses to the root system has not been thoroughly assessed. A system was developed to study the effect of mechanical impedance on root respiration and morphology. Oxygen uptake, by intact plant root systems subjected to three levels of mechanical impedance, was determined polarographically by measuring the oxygen concentration of nutrient solutions before and after flowing through a root media of 1 mm, 3 mm, or no glass beads. Oxygen uptake rates by drybean (Phaseolus vulgaris L.) roots were independent of solution flow rates ≥ 6.0 ml/min‐1 when inlet pO2 was 0.21 atm. Mechanical impedance reduced dry weight, fresh weight, volume, and length of roots after 8 days of treatment. Dry matter percentage of mechanically impeded roots was greater than the control. Roots subjected to mechanical impedance were deformed, branched more frequently, less porous, and consumed more oxygen per unit fresh weight. It is suggested that a greater oxygen supply may be required at the root surface to prevent anoxia in mechanically impeded roots.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Top 10%
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!