Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Energy Conversion
Article . 2021 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Using Flux Linkage Difference Vector in Early Inter-Turn Short Circuit Detection for the Windings of Offshore Wind DFIGs

Authors: Yang Fu; Zixu Ren; Shurong Wei; Yao Xu; Fangxing Li;

Using Flux Linkage Difference Vector in Early Inter-Turn Short Circuit Detection for the Windings of Offshore Wind DFIGs

Abstract

Winding faults are the most commonly occurring type of fault in offshore doubly-fed generator units. Such faults are difficult to detect and repair, and therefore higher fault identification accuracy is required. Most of the existing research analyzes stator and rotor winding faults separately, but due to the coupling characteristics between windings, it is necessary to analyze doubly-fed induction generator (DFIG) winding faults in a unified way. This paper proposes a general fault diagnosis method that can be applied to both the stator and rotor winding faults of DFIGs. First, a general mathematical model of a windings short circuit of a doubly-fed generator is established. Then, according to the mechanism of a turn-to-turn short circuit fault of a DFIG and the expression of a bilateral flux linkage between stator winding and rotor winding, a new fault feature-bilateral flux linkage difference vector (FLDV) is obtained by mathematical derivation. Finally, the recommended value for an experimental motor of feature quantity is set. The proposed method for inter-turn fault (ITF) diagnosis of stator and rotor windings provides technical support for the sustainable development of offshore wind power. A simulation and experiment prove that FLDV has high sensitivity and high reliability for windings ITF diagnosis.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!