
ABSTRACT Auxin is a key signal regulating plant growth and development. It is well established that auxin dynamics depend on the spatial distribution of efflux and influx carriers on the cell membranes. In this study, we employ a systems approach to characterise an alternative symplastic pathway for auxin mobilisation via plasmodesmata, which function as intercellular pores linking the cytoplasm of adjacent cells. To investigate the role of plasmodesmata in auxin patterning, we developed a multicellular model of the Arabidopsis root tip. We tested the model predictions using the DII-VENUS auxin response reporter, comparing the predicted and observed DII-VENUS distributions using genetic and chemical perturbations designed to affect both carrier-mediated and plasmodesmatal auxin fluxes. The model revealed that carrier-mediated transport alone cannot explain the experimentally determined auxin distribution in the root tip. In contrast, a composite model that incorporates both carrier-mediated and plasmodesmatal auxin fluxes re-capitulates the root-tip auxin distribution. We found that auxin fluxes through plasmodesmata enable auxin reflux and increase total root-tip auxin. We conclude that auxin fluxes through plasmodesmata modify the auxin distribution created by efflux and influx carriers.
Indoleacetic Acids, Arabidopsis Proteins, Meristem, Arabidopsis, Plasmodesmata, Gene Expression Regulation, Developmental, Plant Development, Biological Transport, Plants, Genetically Modified, Plant Roots, Gene Expression Regulation, Plant, Tissue Distribution, Research Article
Indoleacetic Acids, Arabidopsis Proteins, Meristem, Arabidopsis, Plasmodesmata, Gene Expression Regulation, Developmental, Plant Development, Biological Transport, Plants, Genetically Modified, Plant Roots, Gene Expression Regulation, Plant, Tissue Distribution, Research Article
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 104 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
