Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmentarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Development
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Development
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Development
Article . 2020
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Auxin fluxes through plasmodesmata modify root-tip auxin distribution

Authors: Nathan L. Mellor; Ute Voß; George Janes; Malcolm J. Bennett; Darren M. Wells; Leah R. Band;

Auxin fluxes through plasmodesmata modify root-tip auxin distribution

Abstract

ABSTRACT Auxin is a key signal regulating plant growth and development. It is well established that auxin dynamics depend on the spatial distribution of efflux and influx carriers on the cell membranes. In this study, we employ a systems approach to characterise an alternative symplastic pathway for auxin mobilisation via plasmodesmata, which function as intercellular pores linking the cytoplasm of adjacent cells. To investigate the role of plasmodesmata in auxin patterning, we developed a multicellular model of the Arabidopsis root tip. We tested the model predictions using the DII-VENUS auxin response reporter, comparing the predicted and observed DII-VENUS distributions using genetic and chemical perturbations designed to affect both carrier-mediated and plasmodesmatal auxin fluxes. The model revealed that carrier-mediated transport alone cannot explain the experimentally determined auxin distribution in the root tip. In contrast, a composite model that incorporates both carrier-mediated and plasmodesmatal auxin fluxes re-capitulates the root-tip auxin distribution. We found that auxin fluxes through plasmodesmata enable auxin reflux and increase total root-tip auxin. We conclude that auxin fluxes through plasmodesmata modify the auxin distribution created by efflux and influx carriers.

Related Organizations
Keywords

Indoleacetic Acids, Arabidopsis Proteins, Meristem, Arabidopsis, Plasmodesmata, Gene Expression Regulation, Developmental, Plant Development, Biological Transport, Plants, Genetically Modified, Plant Roots, Gene Expression Regulation, Plant, Tissue Distribution, Research Article

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    104
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
104
Top 1%
Top 10%
Top 1%
Green
hybrid