Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2008
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Supersymmetric field theories and cohomology

Authors: Cheung, Pokman;

Supersymmetric field theories and cohomology

Abstract

This is the Ph.D. dissertation of the author. The project has been motivated by the conjecture that the Hopkins-Miller tmf spectrum can be described in terms of `spaces' of conformal field theories. In this dissertation, spaces of field theories are constructed as classifying spaces of categories whose objects are certain types of field theories. If such a category has a symmetric monoidal structure and its components form a group, by work of Segal, its classifying space is an infinite loop space and defines a cohomology theory. This has been carried out for two classes of field theories: (i) For each integer n, there is a category SEFT_n whose objects are the Stolz-Teichner (1|1)-dimensional super Euclidean field theories of degree n. It is proved that the classifying space |SEFT_n| represents degree-n K or KO cohomology, depending on the coefficients of the field theories. (ii) For each integer n, there is a category AFT_n whose objects are a kind of (2|1)-dimensional field theories called `annular field theories,' defined using supergeometric versions of circles and annuli only. It is proved that the classifying space |AFT_n| represents the degree-n elliptic cohomology associated with the Tate curve. To the author's knowledge, this is the first time the definitions of low-dimensional supersymmetric field theories are given in full detail.

Keywords

FOS: Mathematics, Algebraic Topology (math.AT), Mathematics - Algebraic Topology

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green