Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IET Renewable Power ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IET Renewable Power Generation
Article . 2020 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Stochastic planning of islanded microgrids with uncertain multi‐energy demands and renewable generations

Authors: Jayachandranath Jithendranath; Debapriya Das;

Stochastic planning of islanded microgrids with uncertain multi‐energy demands and renewable generations

Abstract

Islanded microgrids (IMGs) are embedded power networks with distributed energy resources (DERs) providing a reliable and flexible energy option for off‐grid customers. This work addresses the planning model of renewable‐based IMGs feeding multi‐energy demands considering investment and emission related objectives. The proposed solution is to determine the optimal mix and sizing of various energy sources in IMG, including renewables; for multiple energy demands. This study also presents a hybrid‐scenario and Monte Carlo approach to gauge the uncertainty involved in multi‐energy demands, i.e. electrical, heating, and cooling loads; together with correlation among wind and solar generations. The spatial interdependence among renewable generations is implemented using copula; that generates a synthetic set of stochastic correlated data. The combined load scenarios for multi‐energy demands and renewable samples are implemented with the proposed hybrid approach in the formulated stochastic planning model. In this work, the formulated problem is proposed to solve using meta‐heuristic multi‐objective ant lion optimiser algorithm, that is validated on the test system. The superiority of the proposed approach is highlighted in comparison with other multi‐objective optimisers. The multi‐energy dispatch between associated sources and loads were simulated to show how the obtained capacity can suffice the seasonal multi‐energy demands of a typical day considered.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Top 10%
Top 10%
Top 10%
gold