Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Radboud Repositoryarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Radboud Repository
Article . 2014
Data sources: Radboud Repository
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Tissue Engineering Part A
Article . 2014 . Peer-reviewed
License: Mary Ann Liebert TDM
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Tuning the Degradation Rate of Calcium Phosphate Cements by Incorporating Mixtures of Polylactic-co-Glycolic Acid Microspheres and Glucono-Delta-Lactone Microparticles

Authors: Sariibrahimoglu, K.; An, J.; Oirschot, B.A.J.A. van; Nijhuis, A.W.G.; Eman, R.M.; Alblas, J.; Wolke, J.G.C.; +3 Authors

Tuning the Degradation Rate of Calcium Phosphate Cements by Incorporating Mixtures of Polylactic-co-Glycolic Acid Microspheres and Glucono-Delta-Lactone Microparticles

Abstract

Calcium phosphate cements (CPCs) are frequently used as synthetic bone graft materials in view of their excellent osteocompatibility and clinical handling behavior. Hydroxyapatite-forming CPCs, however, degrade at very low rates, thereby limiting complete bone regeneration. The current study has investigated whether degradation of apatite-forming cements can be tuned by incorporating acid-producing slow-resorbing poly(D,L-lactic-co-glycolic) acid (PLGA) porogens, fast-resorbing glucono-delta-lactone (GDL) porogens, or mixtures thereof. The physicochemical, mechanical, and degradation characteristics of these CPC formulations were systematically analyzed upon soaking in phosphate-buffered saline (PBS). In parallel, various CPC formulations were implanted intramuscularly and orthotopically on top of the transverse process of goats followed by analysis of the soft tissue response and bone ingrowth after 12 weeks. In vitro degradation of GDL was almost completed after 2 weeks, as evidenced by characterization of the release of gluconic acid, while PLGA-containing CPCs released glycolic acid throughout the entire study (12 weeks), resulting in a decrease in compression strength of CPC. Extensive in vitro degradation of the CPC matrix was observed upon simultaneous incorporation of 30% PLGA-10% GDL. Histomorphometrical evaluation of the intramuscularly implanted samples revealed that all CPCs exhibited degradation, accompanied by an increase in capsule thickness. In the in vivo goat transverse process model, incorporation of 43% PLGA, 30% PLGA-5% GDL, and 30% PLGA-10% GDL in CPC significantly increased bone formation and resulted in higher bone height compared with both 10% GDL and 20% GDL-containing CPC samples.

Country
Netherlands
Keywords

Radboudumc 10: Reconstructive and regenerative medicine RIMLS: Radboud Institute for Molecular Life Sciences, Calcium Phosphates, Bone Development, Compressive Strength, Goats, Bone Cements, Complex Mixtures, Body Fluids, Polylactic Acid-Polyglycolic Acid Copolymer, Radboudumc 0: Other Research RIMLS: Radboud Institute for Molecular Life Sciences, Absorbable Implants, Bone Substitutes, Materials Testing, Animals, Lactic Acid, Piperidones, Polyglycolic Acid

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!