Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of General V...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL AMU
Article . 2016
Data sources: HAL AMU
Journal of General Virology
Article . 2016 . Peer-reviewed
Data sources: Crossref
Journal of General Virology
Article . 2016 . Peer-reviewed
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Isolation, full genomic characterization and neutralization-based human seroprevalence of Medjerda Valley virus, a novel sandfly-borne phlebovirus belonging to the Salehabad virus complex in northern Tunisia

Authors: Alwassouf, Sulaf; Bichaud, Laurence; Zhioua, Elyes; Dachraoui, Khalil; Mensi, Mohamed; Seston, Morgan; de Lamballerie, Xavier; +5 Authors

Isolation, full genomic characterization and neutralization-based human seroprevalence of Medjerda Valley virus, a novel sandfly-borne phlebovirus belonging to the Salehabad virus complex in northern Tunisia

Abstract

A new phlebovirus, Medjerda Valley virus (MVV), was isolated from one pool of Phlebotomus sp. (Diptera; Psychodidae) sandflies trapped in the vicinity of the Utique site, northern Tunisia. Genetic analysis based on complete coding of genomic sequences of the three RNA segments indicated that MVV is most closely related to members of the Salehabad virus species, where it is the fourth virus for which the complete sequence is available. A seroprevalence study was performed to search for neutralizing antibodies in human sera in the same region. The results demonstrate that in this area, MVV can readily infect humans despite low seroprevalence rates. Salehabad species viruses have generally been considered to be a group of viruses with little medical or veterinary interest. This view deserves to be revisited according to our human seroprevalence results, together with high animal infection rate of Adana virus and recent evidence of human infection with Adria virus in Greece. Further studies are needed to investigate the capacity of each specific member of the Salehabad virus species to cause human or animal diseases.

Country
France
Keywords

Phlebovirus, 570, [SDV.MHEP] Life Sciences [q-bio]/Human health and pathology, Tunisia, Greece, Molecular Sequence Data, Genome, Viral, Antibodies, Viral, Antibodies, Neutralizing, 630, Insect Vectors, Phlebotomus Fever, Seroepidemiologic Studies, Animals, Humans, Psychodidae, Phylogeny

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Top 10%
Average
Top 10%
bronze