
In the present paper, a software framework comprising the implementation of Model Predictive Control—a popular industrial control method—is presented. The framework is versatile and can be run on a variety of target systems including programmable logic controllers and distributed control system implementations. However, the main attractive property of the framework stems from the goal of achieving smooth technology transfer from the academic setting to real industrial applications. Technology transfer is, in general, difficult to achieve, because of the apparent disconnect between academic studies and actual industry. The proposed software framework aims at bridging this gap for model predictive control—a powerful control technique which can result in substantial performance improvement of industrial control loops, thus adhering to modern trends for reducing energy waste and fulfilling sustainable development goals. In the paper, the proposed solution is motivated and described, and experimental evidence of its successful deployment is provided using a real industrial plant.
advanced control, technology transfer, model predictive control, Logic, Chemical technology, TP1-1185, Industry 4.0, advanced control; model predictive control; industrial process; Industry 4.0; technology transfer, industrial process, Article, Computer Communication Networks, Technology Transfer, Industry, Software
advanced control, technology transfer, model predictive control, Logic, Chemical technology, TP1-1185, Industry 4.0, advanced control; model predictive control; industrial process; Industry 4.0; technology transfer, industrial process, Article, Computer Communication Networks, Technology Transfer, Industry, Software
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
