Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biomechan...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biomechanics
Article
License: implied-oa
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biomechanics
Article . 2013
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Biomechanics
Article . 2013 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Cilia-driven particle and fluid transport over mucus-free mice tracheae

Authors: Hussong, J. (author); Lindken, R. (author); Faulhammer, P. (author); Noreikat, K. (author); Sharp, K.V. (author); Kummer, W. (author); Westerweel, J. (author);

Cilia-driven particle and fluid transport over mucus-free mice tracheae

Abstract

To date, there is only a fragmentary understanding of the fundamental mechanisms of airway mucociliary transport. Application of the latest measurement techniques can aid in deciphering the complex interplay between ciliary beat and airway surface liquid (ASL) transport. In the present study, direct, quasi-simultaneous measurements of the cilia-induced fluid and bead transport were performed to gain a better insight into both transport mechanisms. In this study cilia-induced periciliary liquid (PCL) transport is measured by means of micro Particle Image Velocimetry (μPIV) with neutrally buoyant tracers. Particle Tracking Velocimetry (PTV) with heavier polystyrene-ferrite beads is performed to simulate particle transport. Contrary to recent literature, in which the presence of mucus was deemed necessary to maintain periciliary liquid (PCL) transport, effective particle and fluid transport was measured in our experiments in the absence of mucus. In response to muscarine or ATP stimulation, maximum fluid transport rates of 250 μm/s at 15 μm distance to the tracheal epithelia were measured while bead transport rates over the epithelia surfaces reached 200 μm/s. We estimated that the mean bead transport is dominated by viscous drag compared to inertial fluid forces. Furthermore, mean bead transport velocities appear to be two orders of magnitude larger compared to bead sedimentation velocities. Therefore, beads are expected to closely follow the mean PCL flow in non-ciliated epithelium regions. Based on our results, we have shown that PCL transport can be directly driven by the cilia beat and that the PCL motion may be capable of driving bead transport by fluid drag.

Keywords

380, Rehabilitation, Biophysics, Biomedical Engineering, ?PIV, Biological Transport, Active, Respiratory Mucosa, ASL transport, Muscarinic Agonists, μPIV, Trachea, Mice, Mucus, Adenosine Triphosphate, Muscarine, Mouse trachea, Animals, Orthopedics and Sports Medicine, Cilia, PCL transport

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    27
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 2
    download downloads 8
  • 2
    views
    8
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
27
Top 10%
Average
Top 10%
2
8
hybrid