
We compute the class of the compactification of the divisor of curves sitting on a K 3 K3 surface and show that it violates the Harris-Morrison Slope Conjecture. We carry this out using the fact that this divisor has four distinct incarnations as a geometric subvariety of the moduli space of curves. We also give a counterexample to a hypothesis raised by Harris and Morrison that the Brill-Noether divisors are essentially the only effective divisors on the moduli space of curves having minimal slope 6 + 12 / ( g + 1 ) 6+12/(g+1) .
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 43 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
