Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Mutation Research/DN...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Mutation Research/DNA Repair
Article . 2001 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Characterization of RAD52 homologs in the fission yeast Schizosaccharomyces pombe

Authors: , van den Bosch M; K, Vreeken; J B, Zonneveld; J A, Brandsma; M, Lombaerts; J M, Murray; P H, Lohman; +1 Authors

Characterization of RAD52 homologs in the fission yeast Schizosaccharomyces pombe

Abstract

The RAD52 gene of Saccharomyces cerevisiae is essential for repair of DNA double-strand breaks (DSBs) by homologous recombination. Inactivation of this gene confers hypersensitivity to DSB-inducing agents and defects in most forms of recombination. The rad22+ gene in Schizosaccharomyces pombe (here referred to as rad22A+) has been characterized as a homolog of RAD52 in fission yeast. Here, we report the identification of a second RAD52 homolog in Schizosaccharomyces pombe, called rad22B+. The amino acid sequences of Rad22A and Rad22B show significant conservation (38% identity). Deletion mutants of respectively, rad22A and rad22B, show different phenotypes with respect to sensitivity to X-rays and the ability to perform homologous recombination as measured by the integration of plasmid DNA. Inactivation of rad22A+ leads to a severe sensitivity to X-rays and a strong decrease in recombination (13-fold), while the rad22B mutation does not result in a decrease in homologous recombination or a change in radiation sensitivity. In a rad22A-rad22B double mutant the radiation sensitivity is further enhanced in comparison with the rad22A single mutant. Overexpression of the rad22B+ gene results in partial suppression of the DNA repair defects of the rad22A mutant strain. Meiotic recombination and spore viability are only slightly affected in either single mutant, but outgrowth of viable spores is almost 31-fold reduced in the rad22A-rad22B double mutant. The results obtained imply a crucial role for rad22A+ in repair and recombination in vegetative cells just like RAD52 in S. cerevisiae. The rad22B+ gene presumably has an auxiliary role in the repair of DSBs. The drastic reduced spore viability in the double mutant suggests that meiosis in S. pombe is dependent on the presence of either rad22A+ or rad22B+.

Related Organizations
Keywords

Recombination, Genetic, Sequence Homology, Amino Acid, Cell Survival, Ultraviolet Rays, Molecular Sequence Data, Spores, Fungal, Rad52 DNA Repair and Recombination Protein, DNA-Binding Proteins, Fungal Proteins, Meiosis, Schizosaccharomyces, Amino Acid Sequence, Schizosaccharomyces pombe Proteins, Cloning, Molecular

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    44
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
44
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!