
arXiv: 2312.14134
Learning rewards from expert videos offers an affordable and effective solution to specify the intended behaviors for reinforcement learning (RL) tasks. In this work, we propose Diffusion Reward, a novel framework that learns rewards from expert videos via conditional video diffusion models for solving complex visual RL problems. Our key insight is that lower generative diversity is exhibited when conditioning diffusion on expert trajectories. Diffusion Reward is accordingly formalized by the negative of conditional entropy that encourages productive exploration of expert behaviors. We show the efficacy of our method over robotic manipulation tasks in both simulation platforms and the real world with visual input. Moreover, Diffusion Reward can even solve unseen tasks successfully and effectively, largely surpassing baseline methods. Project page and code: https://diffusion-reward.github.io.
Accepted to ECCV 2024. Project page and code: https://diffusion-reward.github.io/
FOS: Computer and information sciences, Computer Science - Machine Learning, Computer Science - Robotics, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition, Robotics (cs.RO), Machine Learning (cs.LG)
FOS: Computer and information sciences, Computer Science - Machine Learning, Computer Science - Robotics, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition, Robotics (cs.RO), Machine Learning (cs.LG)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
