
arXiv: 1808.10536
While orthogonal drawings have a long history, smooth orthogonal drawings have been introduced only recently. So far, only planar drawings or drawings with an arbitrary number of crossings per edge have been studied. Recently, a lot of research effort in graph drawing has been directed towards the study of beyond-planar graphs such as 1-planar graphs, which admit a drawing where each edge is crossed at most once. In this paper, we consider graphs with a fixed embedding. For 1-planar graphs, we present algorithms that yield orthogonal drawings with optimal curve complexity and smooth orthogonal drawings with small curve complexity. For the subclass of outer-1-planar graphs, which can be drawn such that all vertices lie on the outer face, we achieve optimal curve complexity for both, orthogonal and smooth orthogonal drawings.
Appears in the Proceedings of the 26th International Symposium on Graph Drawing and Network Visualization (GD 2018)
FOS: Computer and information sciences, Computer Science - Data Structures and Algorithms, Data Structures and Algorithms (cs.DS)
FOS: Computer and information sciences, Computer Science - Data Structures and Algorithms, Data Structures and Algorithms (cs.DS)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
