Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the R...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Proceedings of the Royal Society of Edinburgh Section A Mathematics
Article . 2013 . Peer-reviewed
License: Cambridge Core User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Odd linking and bifurcation in gaps: the weakly indefinite case

Authors: Ruppen, Hans-Jörg;

Odd linking and bifurcation in gaps: the weakly indefinite case

Abstract

In this paper, we consider nonlinear Schrödinger equations of the following type:−Δu(x)+ V(x)u(x) − q(x)|u(x)|σu(x) = λu(x), x ∈ ℝN, u ∈ H1(ℝN)\{0},where N ≥ 2 and σ > 0. We concentrate on situations where the potential function V appearing in the linear part of the equation is of Coulomb type; by this we mean potentials where the spectrum of the linear operator −Δ + V consists of an increasing sequence of eigenvalues λ1, λ2,… followed by an interval belonging to the essential spectrum.We study, for λ kept fixed inside a spectral gap or below λ1, the existence of multiple solution pairs, as well as the bifurcation behaviour of these solutions when λ approaches a point of the spectrum from the left-hand side. Our method proceeds by an analysis of critical points of the corresponding energy functional. To this end, we derive a new variational characterization of critical levelsc0 (λ) ≤ c1(λ) ≤ c2(λ) ≤ ⋯ corresponding to an infinite set of critical points.We derive such a multiplicity result even if some of the critical values cn(λ) coincide; this seems to be a major advantage of our approach. Moreover, the characterization of these values cn(λ) is suitable for an analysis of the bifurcation behaviour of the corresponding generalized solutions.The approach presented here is generic; for instance, it can be applied when V and q are periodic functions. Such generalizations are briefly described in this paper and will be the object of a forthcoming article.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Green
bronze