Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Polymer S...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Polymer Science Part A Polymer Chemistry
Article . 2017 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Double thermoresponsive block–random copolymers with adjustable phase transition temperatures: From block‐like to gradient‐like behavior

Authors: Steffen Eggers; Tilman Eckert; Volker Abetz;

Double thermoresponsive block–random copolymers with adjustable phase transition temperatures: From block‐like to gradient‐like behavior

Abstract

ABSTRACTStimuli‐responsive block–random copolymers are very useful “smart” materials as their switching behavior can be tuned by simply adjusting the composition of the random copolymer block. Because of that, we synthesized double thermoresponsive poly(N‐acryloylpyrrolidine)‐block‐poly(N‐acryloylpiperidine‐co‐N‐acryloylpyrrolidine) (PAPy‐b‐P(APi‐co‐APy)) copolymers via reversible addition fragmentation chain transfer (RAFT) polymerization and investigated their temperature‐induced self‐assembly in aqueous solution. By varying the APi/APy ratio in the random copolymer block, its phase transition temperature (PTT1) can indeed be precisely adjusted while the temperature‐induced collapse upon heating leads to a fully reversible well‐defined micellization. By making the two blocks compositionally similar to more than 60%, the polymers' mechanistic thermoresponsiveness can furthermore be changed from block‐like to rather gradient‐like behavior. This means the micellization onset at PTT1 and the corona collapse at the PTT of the more hydrophilic pure PAPy block (PTT2) overlap resulting in one single broad transition. This work thus contributes to the detailed understanding of design, synthesis and mechanistic behavior of tailored “on‐demand” switchable materials. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018, 56, 399–411

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!