Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Oncogenearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Oncogene
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Oncogene
Article . 2000 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Oncogene
Article . 2000
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A murine ATFa-associated factor with transcriptional repressing activity

Authors: Bruno Chatton; A Bahr; De Graeve F; Claude Kedinger;

A murine ATFa-associated factor with transcriptional repressing activity

Abstract

The ATFa proteins, which are members of the CREB/ATF family of transcription factors, have previously been shown to interact with the adenovirus E1a oncoprotein and to mediate its transcriptional activity; they heterodimerize with Jun, Fos or related transcription factors, possibly altering their DNA-binding specificity; they also stably bind JNK2, a stress-induced protein kinase. Here we report the identification and characterization of a novel protein isolated in a yeast two-hybrid screen using the N-terminal half of ATFa as a bait. This 1306-residue protein (mAM, for mouse ATFa-associated Modulator) is rather acidic (pHi 4.5) and contains high proportions of Ser/Thr (21%) and Pro (11%) residues. It colocalizes and interacts with ATFa in mammalian cells, contains a bipartite nuclear localization signal and possesses an ATPase activity. Transfection experiments show that mAM is able to downregulate transcriptional activity, in an ATPase-independent manner. Our results indicate that mAM interacts with several components of the basal transcription machinery (TFIIE and TFIIH), including RNAPII itself. Together, these findings suggest that mAM may be involved in the fine-tuning of ATFa-regulated gene expression, by interfering with the assembly or stability of specific preinitiation transcription complexes.

Keywords

Adenosine Triphosphatases, Cell Nucleus, DNA, Complementary, Base Sequence, Transcription, Genetic, Molecular Sequence Data, Repressor Proteins, Embryonic and Fetal Development, Mice, Transcription Factors, TFII, COS Cells, Animals, Humans, Amino Acid Sequence, RNA Polymerase II, Cyclic AMP Response Element-Binding Protein, Transcription Factor TFIIH, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    28
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
28
Average
Top 10%
Top 10%
bronze