Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Accident Analysis & ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Accident Analysis & Prevention
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The influence of daily sleep patterns of commercial truck drivers on driving performance

Authors: Guang Xiang, Chen; Youjia, Fang; Feng, Guo; Richard J, Hanowski;

The influence of daily sleep patterns of commercial truck drivers on driving performance

Abstract

Fatigued and drowsy driving has been found to be a major cause of truck crashes. Lack of sleep is the number one cause of fatigue and drowsiness. However, there are limited data on the sleep patterns (sleep duration, sleep percentage in the duration of non-work period, and the time when sleep occurred) of truck drivers in non-work periods and the impact on driving performance. This paper examined sleep patterns of 96 commercial truck drivers during non-work periods and evaluated the influence these sleep patterns had on truck driving performance. Data were from the Naturalistic Truck Driving Study. Each driver participated in the study for approximately four weeks. A shift was defined as a non-work period followed by a work period. A total of 1397 shifts were identified. Four distinct sleep patterns were identified based on sleep duration, sleep start/end point in a non-work period, and the percentage of sleep with reference to the duration of non-work period. Driving performance was measured by safety-critical events, which included crashes, near-crashes, crash-relevant conflicts, and unintentional lane deviations. Negative binomial regression was used to evaluate the association between the sleep patterns and driving performance, adjusted for driver demographic information. The results showed that the sleep pattern with the highest safety-critical event rate was associated with shorter sleep, sleep in the early stage of a non-work period, and less sleep between 1 a.m. and 5 a.m. This study also found that male drivers, with fewer years of commercial vehicle driving experience and higher body mass index, were associated with deteriorated driving performance and increased driving risk. The results of this study could inform hours-of-service policy-making and benefit safety management in the trucking industry.

Keywords

Adult, Male, Automobile Driving, Safety Management, Time Factors, Accidents, Traffic, Middle Aged, Binomial Distribution, Motor Vehicles, Work Schedule Tolerance, Cluster Analysis, Humans, Female, Sleep Stages, Safety, Sleep, Fatigue, Work Performance, Aged

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    81
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
81
Top 1%
Top 10%
Top 10%
bronze