Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of the Royal Statistical Society Series A (Statistics in Society)
Article . 2023 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2022
License: CC BY
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Representative pure risk estimation by using data from epidemiologic studies, surveys, and registries: estimating risks for minority subgroups

Authors: Lingxiao Wang; Yan Li; Barry I Graubard; Hormuzd A Katki;

Representative pure risk estimation by using data from epidemiologic studies, surveys, and registries: estimating risks for minority subgroups

Abstract

AbstractRepresentative risk estimation is fundamental to clinical decision-making. However, risks are often estimated from non-representative epidemiologic studies, which usually under-represent minorities. Model-based methods use population registries to improve external validity of risk estimation but assume hazard ratios are generalisable from samples to the target finite population. ‘Pseudoweighting’ methods improve representativeness of studies by using an external probability-based survey as the reference, but the resulting estimators can be biased due to propensity model misspecification and inefficient due to highly variable pseudoweights or small sample sizes of minorities in the cohort and/or survey. We propose a two-step pseudoweighting procedure that post-stratifies the event rates among age/race/sex strata in the pseudoweighted cohort to the population rates, to produce efficient and robust pure risk estimation (i.e. a cause-specific absolute risk in the absence of competing events). For developing an all-cause mortality risk model representative for the USA, our findings suggest that hazard ratios for minorities are not generalisable, and that surveys can have inadequate numbers of events for minorities. Post-stratification on event rates is crucial for obtaining reliable risk estimation for minority subgroups.

Keywords

Methodology (stat.ME), FOS: Computer and information sciences, Applications (stat.AP), Statistics - Applications, Statistics - Methodology

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Green
Related to Research communities