
arXiv: 0801.0192
The topology of broken Lefschetz fibrations is studied by means of handle decompositions. We consider a slight generalization of round handles, and describe the handle diagrams for all that appear in dimension four. We establish simplified handlebody and monodromy representations for a certain subclass of broken Lefschetz fibrations/pencils, while showing that all near-symplectic closed 4-manifolds can be supported by these a la Auroux, Donaldson, Katzarkov. Various constructions of broken Lefschetz fibrations and a generalization of the symplectic fiber sum operation to the near-symplectic setting are given. Extending the study of Lefschetz fibrations, we detect certain constraints on the symplectic fiber sum operation to result in a 4-manifold with nontrivial Seiberg-Witten invariant, as well as the self-intersection numbers that sections of broken Lefschetz fibrations can acquire.
26 pages, 12 figures. Shorter title and fewer typos
Mathematics - Geometric Topology, Mathematics - Symplectic Geometry, FOS: Mathematics, Symplectic Geometry (math.SG), Geometric Topology (math.GT)
Mathematics - Geometric Topology, Mathematics - Symplectic Geometry, FOS: Mathematics, Symplectic Geometry (math.SG), Geometric Topology (math.GT)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
