Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Plant Cell & Environ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Plant Cell & Environment
Article . 2011 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

SKP1 is involved in abscisic acid signalling to regulate seed germination, stomatal opening and root growth in Arabidopsis thaliana

Authors: Chijun, Li; Zuojun, Liu; Qirui, Zhang; Ruozhong, Wang; Langtao, Xiao; Hong, Ma; Kang, Chong; +1 Authors

SKP1 is involved in abscisic acid signalling to regulate seed germination, stomatal opening and root growth in Arabidopsis thaliana

Abstract

ABSTRACTAbscisic acid (ABA) regulates many aspects of plant development, including seed dormancy and germination, root growth and stomatal closure. Plant SKP1 proteins are subunits of the SCF complex E3 ligases, which regulate several phytohormone signalling pathways through protein degradation. However, little is known about SKP1 proteins participating in ABA signalling. Here, we report that the overexpression of Triticum aestivum SKP1‐like 1 (TSK1) in Arabidopsis thaliana (Arabidopsis) resulted in delayed seed germination and hypersensitivity to ABA. The opening of stomatal guard cells and the transcription of several ABA‐responsive genes were affected in transgenic plants. In contrast, Arabidopsis skp1‐like 1 (ask1)/ask1 ASK2/ask2 seedlings exhibited reduced ABA sensitivity. Furthermore, the transcription of ASK1 and ASK2 was down‐regulated in abi1‐1 and abi5‐1 mutants compared with that in wild type. ASK1 or ASK2 overexpression could rescue or partially rescue the ABA insensitivity of abi5‐1 mutants, respectively. Our work demonstrates that SKP1 is involved in ABA signalling and that SKP1‐like genes may positively regulate ABA signalling by SCF‐mediated protein degradation.

Related Organizations
Keywords

Arabidopsis, Down-Regulation, Germination, Plant Roots, Plant Growth Regulators, Gene Expression Regulation, Plant, S-Phase Kinase-Associated Proteins, Triticum, Plant Proteins, SKP Cullin F-Box Protein Ligases, Arabidopsis Proteins, Gene Expression Regulation, Developmental, Plants, Genetically Modified, Plant Leaves, Seedlings, Mutation, Plant Stomata, Proteolysis, Abscisic Acid, Signal Transduction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    49
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
49
Top 10%
Top 10%
Top 10%
bronze